HOW MICROBIAL ACTIVITIES CHANGE THE WATER CHEMISTRY OF LAKES, AND HOW KNOWLEDGE OF THESE AFFECTS POLICIES

CAROL KELLY

Why are microbes so important in determining water chemistry?

Energy-producing reactions of prokaryotic microbes very <u>diverse</u> (eukaryotes all use oxygen to produce energy)

Microbial

 enzymes
 catalyze many
 different
 reactions

"Acid Rain"

- Sulfur oxides mainly from fossil fuel burning →SO_x's
- Nitrogen oxides from high temperature combustion →NO_x's
- These gases react in the atmosphere to produce H₂SO₄ and HNO₃

- David Schindler
- John Rudd
- Ray Hesslein
- Bob Cook
- Eva Schindler
- Vince St Louis
- Michael Turner
- Akira Furutani
- Morris Holoka
- ▶ Mike Stainton
- Jim Prokopovich
- Robert Flett
- John Amaral
- Shirley Richards
- Ken Beatty
- Patricia Ramlal
- Nancy Loewen

ELA's first acid rain experiment —addition of known quantities of sulfuric acid (H₂SO₄) to L. 223

For many decades, lake water chemistry and its buffering capacity thought to be determined largely by chemistry of rain and runoff

In lake water, what is buffering capacity?

"Titratable anions" = HCO_3^- and CO_3^{2-}

$$H^+ + CO_3^{2-} \leftrightarrow HCO_3^{-}$$
 $H^+ + HCO_3^{-} \leftrightarrow CO_2 + H_2O_3^{-}$

Lake 223, First 2 years of experimental acidification with H₂SO₄

	Initial pH	Predicted (target) pH	Actual Final pH
Year 1	6.65	4.46	6.18
Year 2	6.18	4.60	6.05

Lake 223, 1976

Microbial Consumption of Sulfuric Acid

Sulfate Reducing Bacteria

- --Live in anoxic environments
- --Use sulfate instead of oxygen in respiration:

$$2CH_2O+SO_4^{2-} + 2H^+ \rightarrow H_2S + 2CO_2 + 2H_2O$$

"Biological buffering"

Microbial sulfate reduction was the major consumer of acid in L 223!

Mass balance budgets:

Table 4. Alkalinity generated from reactions of different ions in Lake 223, as deduced from mass-balance budgets. Data are in keq.

	Ca2+	Mg ²⁺	Na*	К*	Fe ⁵ *	Mn ²⁺	NH.	SO ₄ :-	NO ₃ -	a-	Σ cation (C)	Σ anion (A)	C + A	Measured Alk prod.
1976	32.9	2.8	6.7	1.6	2.2	-0.5	1.8	41.5	1.6	5.9	47.5	49.0	96.5	111.7-126.8
1977	13.5	-6.3	-1.1	0.8	7.1	0.3	-2.4	68.4	4.5	-6.3	11.9	66.6	. 78.5	26.7-109.5
1978	21.0	6.0	14.9	0.5	-10.4	1.7	-1.9	39.5	1.9	16.5	31.8	57.9	89.7	52.0-100.2
1979	6.2	-6.1	-1.3	-0.6	-5.1	3.5	-9.4	5.2	4.5	-18.8	-12.8	-9.1	-21.9	61.6
1980	-16.0	-15.0	-8.6	-4.1	0.4	3.4	-1.4	79.3	6.3	19.8	-41.3	105.4	64.8	105.8
1981	-4.5	-4.6	0.1	-0.9	-13.1	-2.4	-5.4	131.5	8.4	-0.4	-30.8	139.5	108.7	121.8
1982	30.6	-8.8	-2.4	-9.2	9.1	12.6	-10.8	65.1	5.7	9.1	21.1	79.9	101.0	109.4
1983	_36.0	-17.2	-5.6	-0.1	$_{-4.1}$	-4.3	-0.1	105.1	1.5	0.7	4.6	107.3	111.9	66.8
Total	119.7	-49.2	2.7	-12.0	-13.9	14.3	-29.6	535.6	34.4	26.5	32.0	596.5	628.5	655.8-801.9
Total Alk prod. (%)	19	-8	0	-2	-2	2	-5	85	5	4	5	95		

- Not all the sulfate loss was accounted for by the losses in the anoxic hypolimnion (deep water)
- What about epilimnetic (shallow water) sediments overlaid by oxygenated water?

- Most of the water in a lake is in contact with the shallow water sediments
- Harder to measure effects—lots of methods development needed

Core incubations

Sulfate reduction -- ³⁵SO₄²⁻ Diffusion rates -- ³H₂O Denitrification -- ¹⁵NO₃

"Flett" probes

"Peepers" equilibrate with sediment pore waters

Peeper Analyses:

pH DIC CH₄ SO₄²⁻ NO₃⁻ Fe²⁺ NH₄⁺ H₂S

L. 223 "Peeper" profile 4 m August, 1981

If no microbial activity, profiles would be straight up and down

Shallow water sediments anoxic just below surface

SO₄² reduction responds to increased SO₄²

What about non-ELA lakes?

Why did lakes in same depositional region (i.e., same acid rain input) have different pH's?

Dorset, ON

Adirondack Mtns, NY

Hovvatn, Norway

Decreasing pH

Profiles of sulfate profiles and pH were similar in other lakes, except at lowest pH in Norway

- X Chubb Lake (Dorset, ON)
- □ Lille Hovvatn Lake, Norway
- + Hovvatn Lake, Norway
- ♦ Big Moose Lake, NY
- Δ Woods L, NY
- V Lake 302S

We calculated <u>relative</u> rates of sulfate reduction by comparing reduction rate to sulfate concentrations:

Table 2. Measured rates of sulfate reduction* on given dates, and estimates of annual mass transfer coefficients for sulfate (summer rate \times 0.5)

Lake	Sampling	Date	SO ₄ ²⁻	SO ₄ ²⁻	Annual
	Depth		μ eq · L ⁻¹	reduction rate	S_s
	(m)		, –	μ eq·m ⁻² ·d ⁻¹	m⋅yr ⁻¹
302S	1.5	Aug. 1984	136	498	0.65**
223	4	Jul. 1983	236	426	0.33
114	2	Sept. 1981	128	215	0.31
Twitchell	1	Jun. 1984	92	222	0.44
Big Moose	3.5	Jul. 1983	150	400	0.49
Woods	1.5	Jun. 1984	126	362	0.52
Dart's	2.5	Jun. 1984	108	126	0.21
Red Chalk	2	Sept. 1982	176	150	0.16
Chubb	1.5	Sept. 1982	172	270	0.29
Plastic	3.0	Sept. 1982	146	91	0.11
Crystal	6	Jun. 1985	66	100	0.56

 $\bar{x} = 0.36 \pm 0.17$

Inflow to a lake depends on watershed size

Two lakes of equal volume, but different inflow rates:

R_s = Retention of sulfate or Fraction of sulfate "lost" in the lake

Can be modeled if you include water residence time and average S_S

Sulfate loss and acid neutralization is predictable!

Acid Rain has both Sulfuric Acid (H₂SO₄) and Nitric Acid (HNO₃)

DO THEY BOTH NEED TO BE REGULATED TO THE SAME DEGREE?

Lake 302 North (Nitric acid) and South (Sulfuric Acid)

Curtain dividing the two basins

Microbial Consumption of Nitric Acid (HNO3)

<u>Algae</u>

--Take up NO₃ as a nutrient

Denitrifying Bacteria

- --Live in near-anoxic environments
- --Use nitrate instead of oxygen in respiration:

$$2 \text{ NO}_3^- + 2 \text{ H}^+ + \text{ organic carbon} \rightarrow \text{N}_2 + 2\text{H}_2\text{O} + \text{CO}_2$$

Sediment traps collect algal cells as they sediment to bottom of lake

Nitrate additions did <u>not</u> increase algal productivity

Table 4. Sedimentation rates of C, N, and S (μmol m⁻² d⁻¹) in summer 1982 and 1984 from the epilimnia of the north and south basins of Lake 302.

	С	N	S*
1982†			
North basin	14	1.3	0.086
South basin	18	2.5	0.11
1984‡			•
North basin	22	1.9	0.14
South basin	25	3.0	0.16

NO3- removal by denitrifying bacteria was much slower than by algae

Lake	Years	Midsummer NO ₃ - μmol L ⁻¹	% NO ₃ - Removed	t _w yr	S _N m yr ⁻¹
302 South (pre-acid) 302 North (pre-acid) 227 Crystal 223 Plastic 239 Harp Langtjern 302 South (acid added) 302 North (acid added) Dart's	1981 1981 1971-1982 1984 1976-1983 1984-1986 1981-1983 1984-1986 1972-1978 1982-1985 1982-1985	0.13 0.14 0.45 ND <0.4 <0.15 0.2 <0.15 to 1.2 2 0.8 to 1 20 to 40 20	120 130 100 99 98 81 57 57 36 89-93 69 7	8.3 5.8 4.1 25 8.7 3.0 2.5 2.5 0.2 8.3 5.8 0.6	440 ^b 220 ^b 210 ^c 42 ^c 25 ^b 11 ^c 6.8 ^c 6.8 ^c 6.8 ^c 6.9 ^b ,d 5 ^b 0.89 ^c ,e

Modeled nitrate removal (R_N)

Using water residence time and average S_N

Nitric acid did acidify, but only half as efficient as sulfuric acid in acidifying a lake

Why did nitric acid acidify less efficiently?

What happens at really low pH?

Nitrogen cycle was disrupted at low pH

NH₄⁺ accumulated

N fixation (Bacteria) Denitrification (H+ consumption) Organic N (cells) Nutrient uptake Ammonification Nitrification

MICROBIAL ACTIVITIES, WATER CHEMISTRY, AND POLICIES

► ELA experiments, changing one thing at a time, were crucial in understanding fate of acid rain in lakes

► These experiments provided means to develop understanding of mechanisms, and methods that could be used to transfer understanding to other lakes